

Micro - 470

Mechanical Scaling Problem Set

Accelerometer design exercise

Problem 2: Design an accelerometer

- You have maximum: 1 mm x 1 mm area (for cost reasons)
- Assume you are limited by thermal noise, and want to respond in 5 ms. Design an accelerometer: size of proof mass, and spring constant. Use $Q=2$
- What displacement would you have at the minimum detectable acceleration?
- Assuming your readout circuit can sense $\Delta C=5 \text{ aF}$, what is minimum number of fingers in readout capacitance (assuming single mask fabrication) to read a_{\min} ? Is this reasonable?
- Hints
 - as always, there is an infinite number of solutions: try to justify your choices from performance (sensitivity), fabrication feasibility, robustness, cost, etc.
 - Choose f_{res} to start the design
 - Use linear springs / assume linear behavior
 - How far would mass move at 10 g acceleration?

Accelerometer sensitivity and thermal noise

$$S_x = \frac{x}{a} = \frac{m}{k} \propto L^2$$

$$S_x = \frac{1}{\omega_0^2}$$

Want low f_{res} for high sensitivity, ie high m, low k

If limit chip size, can only play with k (if we use full wafer thickness as the mass)

$$a_{\text{min}} = \sqrt{\frac{4k_b T \omega_0}{m Q}} \sqrt{\Delta f}$$

Want high m, and low f_{res} for low thermal noise

But

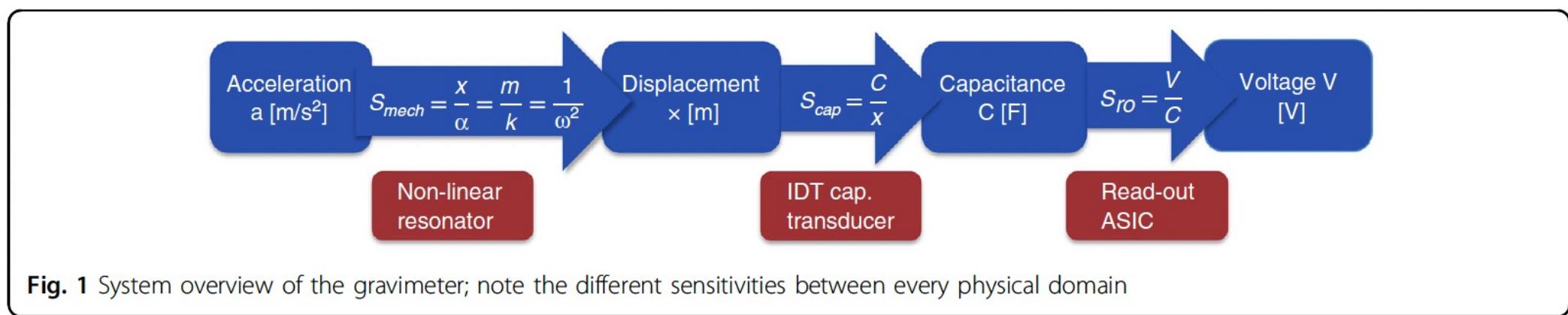
- low f_{res} means low bandwidth !
- Readout noise to be considered
- Mechanical robustness...

ARTICLE

Open Access

High-resolution MEMS inertial sensor combining large-displacement buckling behaviour with integrated capacitive readout

Brahim El Mansouri¹, Luke M. Middelburg¹, René H. Poelma¹, Guo Qi Zhang¹, Henk W. van Zeijl¹, Jia Wei², Hui Jiang³,
Johan G. Vogel^{1,4} and Willem D. van Driel^{1,4}

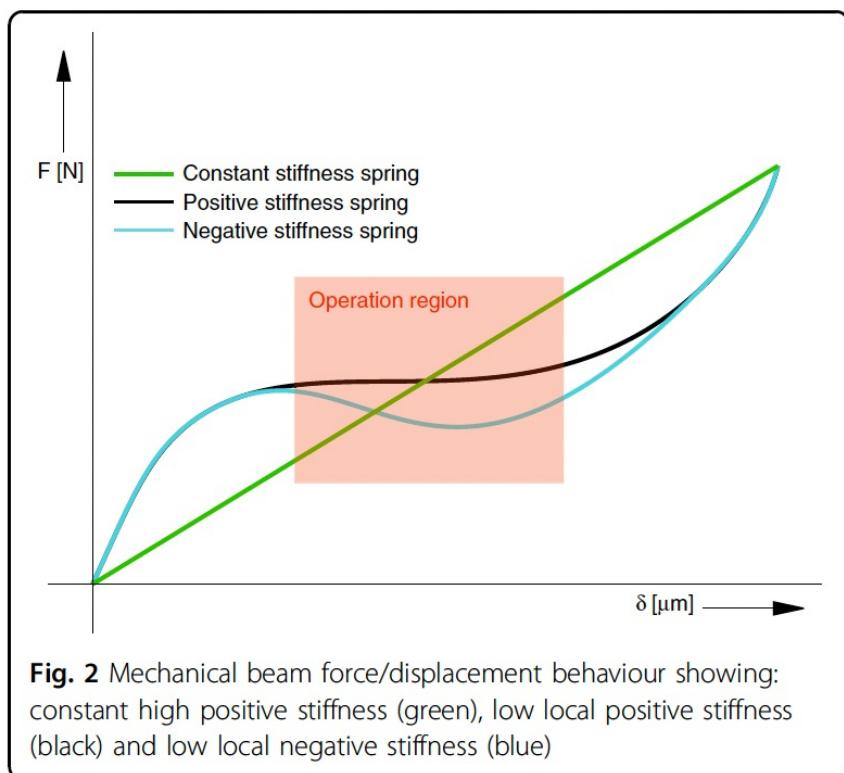


ARTICLE

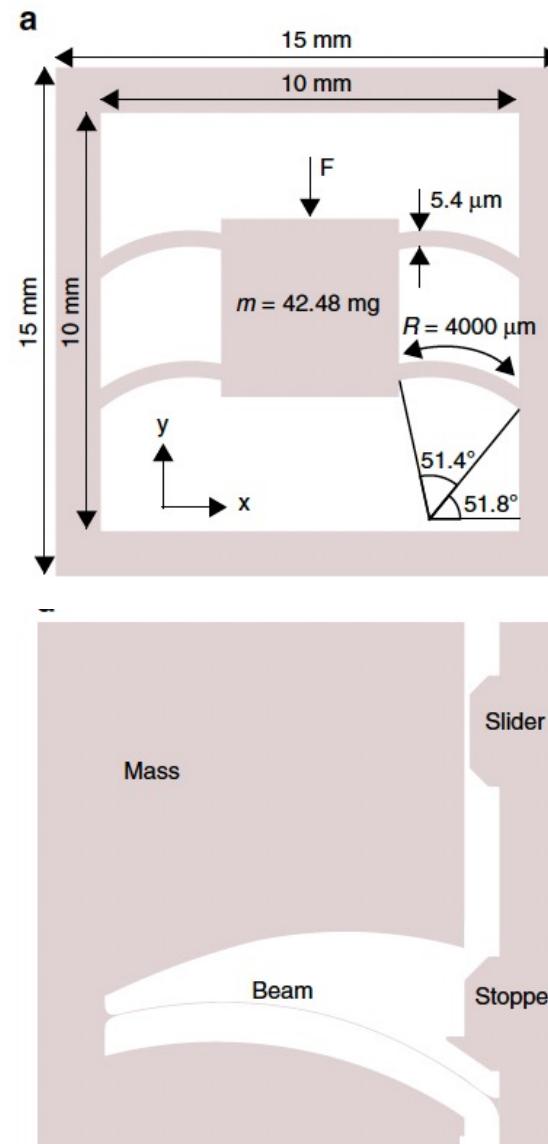
Open Access

High-resolution MEMS inertial sensor combining large-displacement buckling behaviour with integrated capacitive readout

Brahim El Mansouri¹, Luke M. Middleburg¹, René H. Poelman¹, Guo Qi Zhang¹, Henk W. van Zeijl¹, Jia Wei², Hui Jiang³,
Johan G. Vogel³ and Willem D. van Drie^{1,4}



They wanted really “soft” springs to have high sensitivity
The “trick” used by authors: buckling beams



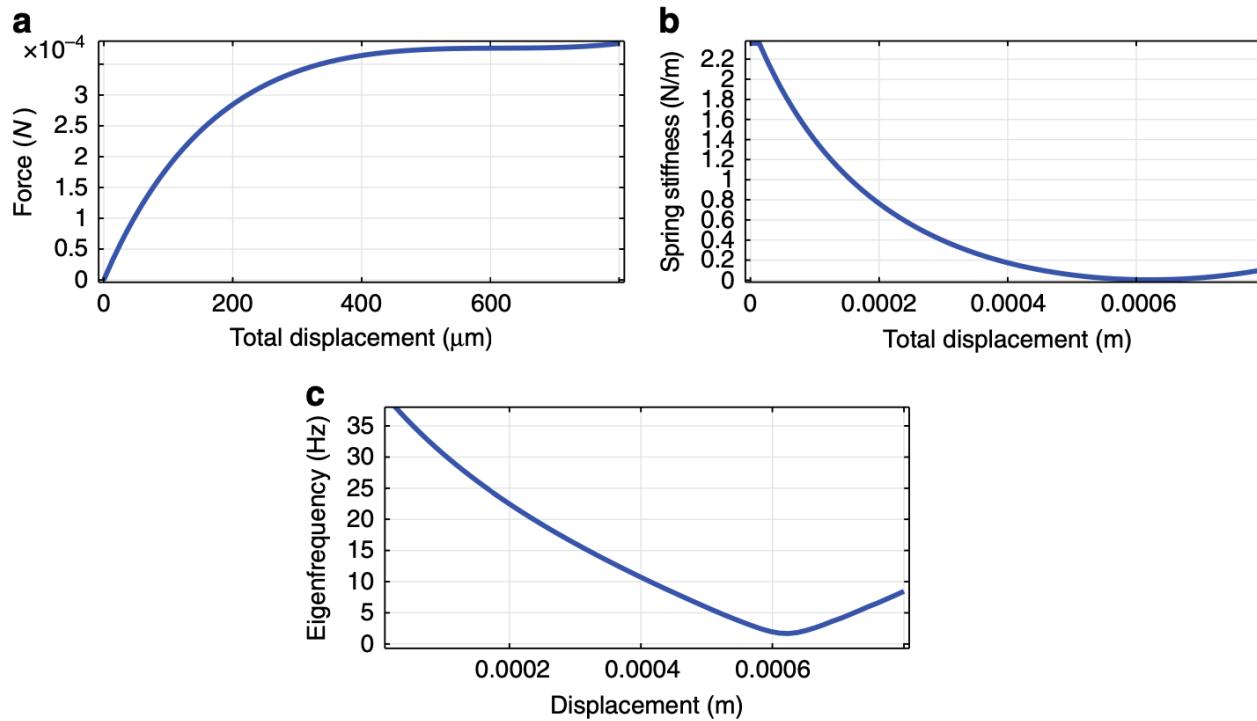
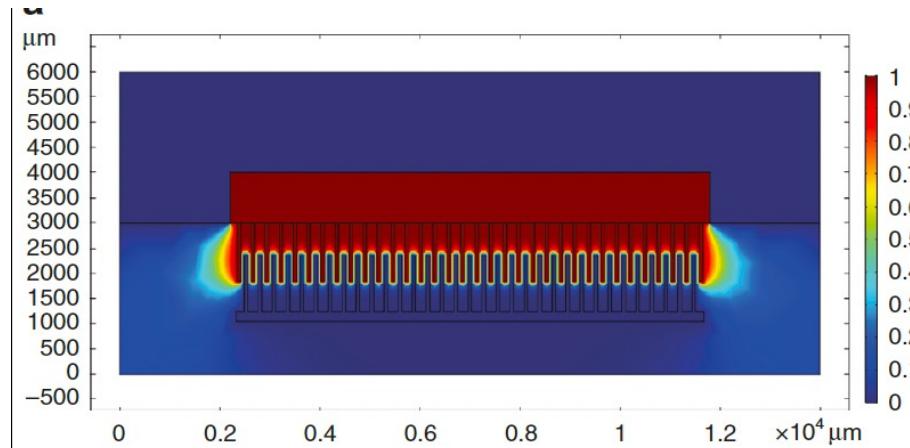
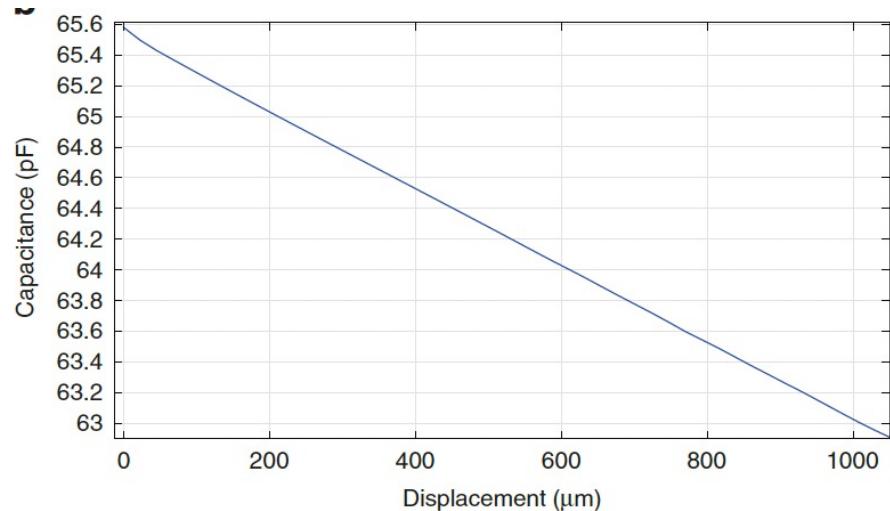
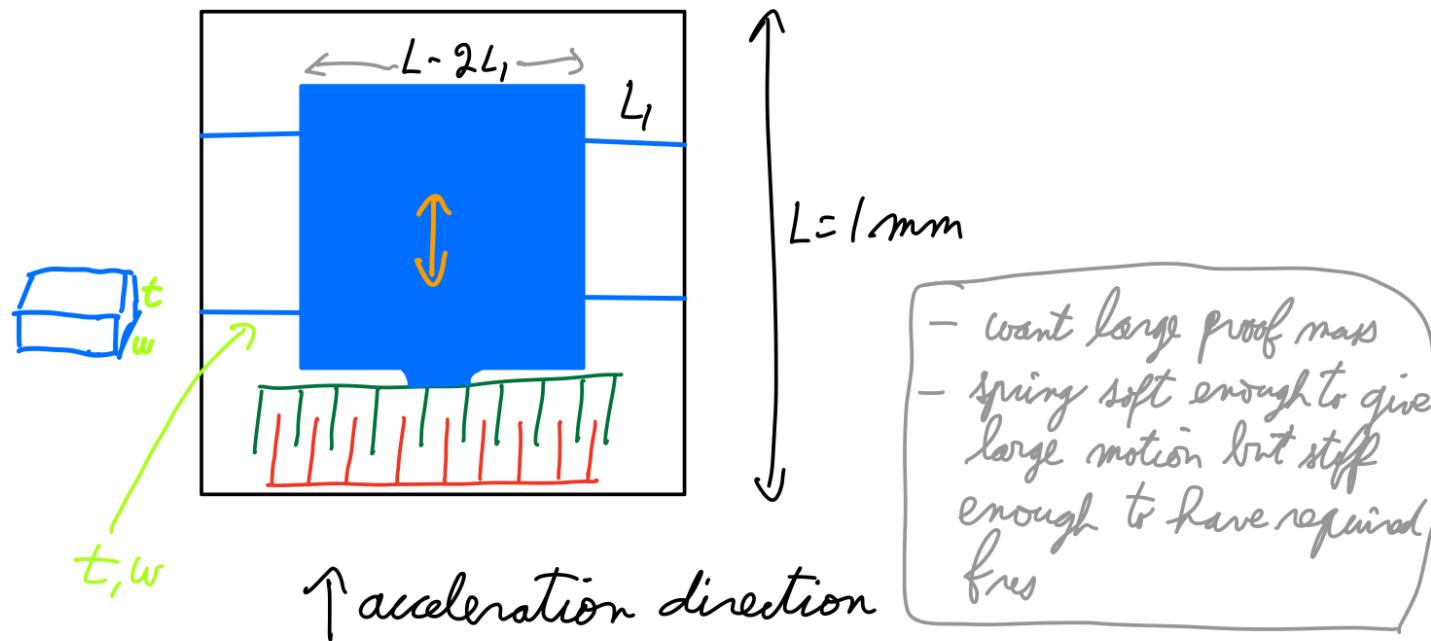


Fig. 4 FEM simulation results on the non-linear spring design. **a** Force vs. deflection of the proof mass in the y direction, **b** stiffness as a function of displacement in the y direction, **c** resonance (Eigen) frequency as a function of displacement



Readout noise from ASIC, within a BW of 20 Hz, is
 $0.137 \text{ aF/ } \text{sqrt(Hz)}$



$$1 \text{ mm} \times 1 \text{ mm} \quad 5 \text{ ms response} \quad Q = 2$$

There are many possible solutions!

5 ms response. I chose $f_{\text{res}} = 500 \text{ Hz}$ to work below resonance

$$\omega_0 = 2\pi f = 2\pi \cdot 500 = 3000 \text{ Hz} = \sqrt{k/m}$$

Choosing f_{res} set the sensitivity...

- spring is simple beam, for simplicity

$$k = \frac{1}{4} E \frac{w^3 t}{L_1^3} \text{ per spring. but 4 in parallel}$$

use $\omega_0 = 500$ Hz to link spring and mass

ie to find link between L_1 and w

$$m = \rho t (L - 2L_1)^2$$

ρ = density of Si
assume mass is same thickness as the springs (one mass process)

$$\omega_0^2 = \frac{E w^3 t}{L_1^3} \frac{1}{\rho t (L - 2L_1)^2}$$

$$\rightarrow \omega^2 = \frac{\rho \omega_0^2 L_1^3 (L - 2L_1)^2}{E}$$

no t dependence as $\frac{k}{m} \propto t$

eg $L_1 = 250 \mu\text{m}$ $w = 0.8 \mu\text{m}$

- can make w wider, then get higher ω_0 , at expense of smaller motion.

→ $k = 0.012 \text{ N/m}$ per spring
 $= 0.05 \text{ N/m}$ for 4.

Noe can compute a_{\min}

And hence min Δx

Choose t based on process, here assumes 20:1 etch ratio

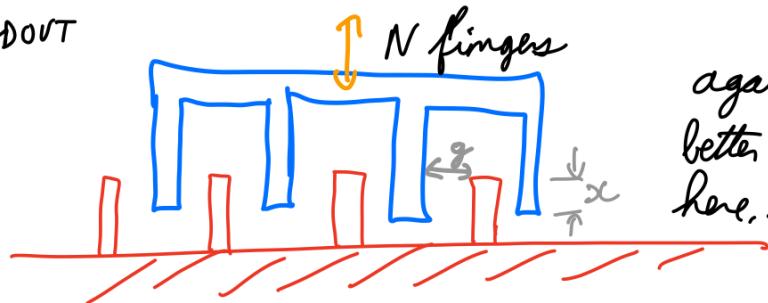
$$a_{\min}^{\text{thermal noise}} = \sqrt{\frac{4h_B T w_0}{Q m}} \sqrt{\Delta f} \quad \Delta f = 200 \text{ Hz}$$

$$\text{for } t = 20 \mu\text{m} \quad a_{\min} = 6.6 \cdot 10^{-4} \text{ m s}^{-2} \quad m = 1.2 \cdot 10^{-8} \text{ kg}$$
$$T = 300 \text{ K} \quad = 66 \mu\text{G}$$

$$\Delta x \text{ for } a_{\min} : \Delta x = \frac{ma}{\hbar} = \frac{1.2 \cdot 10^{-8} \cdot 6.6 \cdot 10^{-4}}{0.05} = 1.5 \cdot 10^{-10} \text{ m}$$
$$\Delta x_{\min} = \underline{0.15 \text{ nm}}$$

- need to detect 0.15 nm
- but also e.g 1 G $\rightarrow \Delta x = \frac{1.2 \cdot 10^{-8} \cdot 9.8}{0.05} = 2.3 \mu\text{m}$
- would like thicker t for higher mass, but limited by etch process to $t \sim 20$.

READOUT



again, many options
better could be differential
here, simpler solution.

$$C = \epsilon_0 \frac{t x}{g}$$

$$\Delta C = \epsilon_0 t \frac{\Delta x}{g}$$

per finger

$$\Delta C_{\min} = \frac{\epsilon_0 t}{g} \Delta x_{\min} \cdot N$$

$$g = 1 \mu\text{m} \quad t = 20 \mu\text{m}$$

$$\Delta C_{\min} = 3 \cdot 10^{-20} \text{ F per finger}$$

want g as small as
possible.
but difficult to make
 $g < t/20$

$$10^{-10} \cdot 20 \cdot 1.5 \cdot 10^{-10}$$

$$3 \cdot 10^{-20}$$

readout circuit can sense $5 \text{ aF} = 5 \cdot 10^{-18} \text{ F}$

$$N \text{ fingers} = \frac{5 \cdot 10^{-18}}{3 \cdot 10^{-20}} = 167 \text{ fingers}$$

Was it fair to ignore the mass of the comb finger?